Costs – list of indicators

- Cables (AC&DC)
- Offshore Nodes
- Onshore Nodes

Linear Cost Model
• Linear Cost Model (incl. expected future trends)
• Sensitivity Analysis
• All results discounted to 2017 with an interest rate of 4%

Evaluated as most suitable cost data sets
Cable Cost
(Cable + Installation)
- length- and power dependent cost
- length-dependent cost

Onshore Node Cost
(Converter/Transformer + Installation)
- power-dependent cost
- fixed cost

Offshore Node Cost
(Converter/Transformer + Platform + Installation)
- power-dependent cost
- fixed cost

[Linear cost model, cf. Härtel et. al. 2017]
CS1 (SE/PO/LT)

High Offshore Wind power

Cost Results

1.56 1.05 1.30
0.45
0.29
0.53
1.81
1.30
0.02
0.02
0.93
0.93
0.93

bn €

HVAC Offshore Nodes
HVAC Onshore Nodes
HVAC Cables
HVDC Offshore Nodes
HVDC Onshore Nodes
HVDC Cables

CS1_1a Zero Integration
CS1_2a Partial Integration
CS1_3a Max Integration
CS1 (SE/PO/LT)

Low Offshore Wind Power

Cost Results

15 March 2018, Espoo
CS2 (DE/SE/DK)
CS2 (DE/SE/DK)

Low Offshore Wind Power

Cost Comparison

15 March 2018, Espoo
Sensitivity Analysis

Exemplary Analysis for CS1_2a (Part. Integ., High OWP)
Net Present Benefit
CS1 (LT/PO/ SE)

<table>
<thead>
<tr>
<th></th>
<th>CS1 (LT/ PO/SE)</th>
<th>CS1 (LT/ PO/SE)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>High Offshore Wind Power</td>
<td>Low Offshore Wind Power</td>
</tr>
<tr>
<td></td>
<td>Partial Integration</td>
<td>Max Integration</td>
</tr>
<tr>
<td>CS1_2a – CS1_1a</td>
<td>CS1_3a – CS1_1a</td>
<td>CS1_2b – CS1_1b</td>
</tr>
<tr>
<td></td>
<td>CS1_3b – CS1_1b</td>
<td></td>
</tr>
<tr>
<td>Benefit Difference (higher is better)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.06 bn€</td>
<td>0.09 bn€</td>
<td>0.92 bn€</td>
</tr>
<tr>
<td>0.99 bn€</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cost Difference (lower is better)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-0.67 bn€</td>
<td>0.08 bn€</td>
<td>0.17 bn€</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-0.03 bn€</td>
</tr>
</tbody>
</table>
CS2 (DE/SE/DK)

<table>
<thead>
<tr>
<th>CS2 (DE/SE/DK)</th>
<th>High Offshore Wind Power</th>
<th>Low Offshore Wind Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>Partial Integration</td>
<td>Max Integration</td>
<td>Partial Integration</td>
</tr>
<tr>
<td>CS2_2a - CS2_1a</td>
<td>CS2_3a - CS2_1a</td>
<td>CS2_2b - CS2_1b</td>
</tr>
<tr>
<td>Benefit Difference (higher is better)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.83 bn€</td>
<td>1.76 bn€</td>
<td>-0.03 bn€</td>
</tr>
<tr>
<td>Cost Difference (lower is better)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.46 bn€</td>
<td>0.04 bn€</td>
<td>-0.02 bn€</td>
</tr>
</tbody>
</table>
CS1 (SE/PO/LT)

High Offshore Wind Power

<table>
<thead>
<tr>
<th>Partial Integration</th>
<th>Max Integration</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Offshore Wind Power</td>
<td>0.73</td>
</tr>
<tr>
<td></td>
<td>0.01</td>
</tr>
</tbody>
</table>

Net Present Benefit
CS1 (SE/PO/LT)

Low Offshore Wind Power

Net Present Benefit

Partial Integration: €0.75bn
Max Integration: €1.02bn

15 March 2018, Espoo
CS2 (DE/SE/DK)

High Offshore Wind Power

<table>
<thead>
<tr>
<th>Partial Integration</th>
<th>Max Integration</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.37</td>
<td>1.72</td>
</tr>
</tbody>
</table>

Net Present Benefit

15 March 2018, Espoo
CS2 (DE/SE/DK)

Low Offshore Wind Power

-0.1

bn €

Partial Integration Max Integration

Net Present Benefit

15 March 2018, Espoo
• No general trend related to the evaluation of partial and maximum integration scenarios could be identified

• The cost structure is case specific
 • Cost reduction potential is higher when hub connections are also part of the zero integration case
 • Reduction of AC components could be positive but is often compensated by additional DC offshore node cost

• The main benefit brings the interconnection, which is already part of the base case (zero integration)

• Benefits are almost equal for partial and max integration scenarios, costs can vary significantly
• Finalisation of assumptions for future cost trends
• Inclusion of approximate cost assumptions for DC breaker
• CBCA (Cross-Border-Cost-Allocation) methodology and development of results

• Next TWG seminar in Bremerhaven (15th of May, 16–19pm)
For further information:

Mail: info@baltic-integrid.eu
Web: www.baltic-integrid.eu

Baltic InteGrid represented by the Lead Partner:

Institute for Climate Protection, Energy and Mobility (IKEM)

Magazinstraße 15-16, 10179 Berlin, Germany
Phone: +49 (0) 30 408187015
Mail: info@ikem.de
Web: www.ikem-online.de

The content of the presentation reflects the author’s/partner’s views and the EU Commission and the MA/JS are not liable for any use that may be made of the information contained therein. All images are copyrighted and property of their respective owners.

For further information on CBA work:

Deutsche WindGuard GmbH
Anna-Kathrin Wallasch, Head of markets & Politics
a.wallasch@windguard.de

IKEM
Clemens Gerbaulet, Electricity Market Model
Clemens.Gerbaulet@ikem.de

Sign up for Newsletter »