Unmanned Underwater Digitalization

Cloud-based Integration of Next Generation Sensors for Predictive Analytics
Forward Looking Statements

Some statements herein contain forward-looking information. The use of any of the words "anticipate," "believe," "continue," "could," "estimate," "expect," "intend," "may," "will," "plans," "project," "should," "target" and similar expressions are intended to identify forward-looking statements. These statements may include, but are not limited to, statements with respect to potential markets and contracts, the completion of a proposed transaction, sales and EBITDA projections or potential applications.

These statements address future events and conditions and, as such, involve known and unknown risks, uncertainties and other factors which may cause the actual results, performance or achievements to be materially different from any future results, performance or achievements expressed or implied by the statements. Such factors and assumptions include, among others, the effects of general economic conditions, the ability to project future sales and margins from current fundamentals and assumptions about market share, changing foreign exchange rates and actions by government authorities or cross-border authorities with jurisdiction over waterways, and negotiations and misjudgments in the course of preparing forward-looking information. Kraken believes the expectations reflected in those statements are reasonable but no assurance can be given that these expectations will prove to be correct and such forward-looking statements included in, or incorporated by reference into, this presentation should not be unduly relied upon. These statements speak only as of the date of this presentation. In addition, there are known and unknown risk factors which could cause the Company's actual results, performance or achievements to differ materially from any future results, performance or achievements expressed or implied by the forward-looking statements.

Known risk factors include risks associated with the ability to close contracts, working capital risk to be able to build inventory, loss of key personnel, lack of patents protecting intellectual property, changes in competing technology, continuing shrinkage of military budgets or other target customer budgets, risks associated with publicly traded company obligations, inability to raise required capital, and other potential risks that arise in the normal course of business. Forward-looking statements are made based on management's beliefs, estimates and opinions on the date that statements are made and the Company undertakes no obligation to update forward-looking statements if these beliefs, estimates and opinions or other circumstances should change, except as required by law.
Europe E&P - ROV Operations

Marine Crew
ROV Pilots/techs + Supervisors
CP Techs
FMD Techs
Inspection Co-ordinator
Online Inspectors
Offline Inspectors
Surveyor
Offshore Manager
BG Group QA/QC
BG Group Representative

Structural Inspection Campaign

Typical vessel POB = 60 persons
Typical Inspection crew = 32 persons

Slide Credit: Gordon Laurenson Shell/BG Group
Actionable Intelligence
Underwater Digitalization

Lowest OPEX
Actionable Intelligence
Unmanned Deployment

Vessel of Opportunity

Subsea Resident

Host Facility

Autonomous Surface Vessel
The 3 “A” of Autonomy

Automated (where we have been – high TRL)
• By default with AUVs
• Given a detailed mission, the vehicle will run it
• ...and only the mission

Adaptive (where we are – med TRL)
• Use in-situ data to optimise a task
• Adaptive track spacing

Autonomous (where we are going – low TRL)
• High level mission goals
• Using adaptive capabilities as inputs to accomplishing that goal
• Ability to evaluate progress and plan tasks accordingly
• Cognitive - learning from success and failure
1. Unmanned ASV deploys E-HROV to collect massive amount of data, included laser 3D

2. Specialised databases capture and organize the data in remote clouds

3. AI software detect anomalies and reports in real time

4. Service technicians receive alerts, review data and create reports

4. Data and reports are shared to optimize repairs and risk base inspection campaigns
Deep Learning – Predictive Analytics

Corrosion Detection
Why Synthetic Aperture Sonar?

- Ultra High Image Resolution (3x3 cm)
- Co-registered 3D bathymetry
- Increased Area Coverage Rate (600m Swath)
- Operational Safety (up to 30m fly altitude)
- Real Time Processing
- Real Time ATR

Image courtesy ECA Robotics
Synthetic Aperture Sonar Technology

Conventional Side Scan Sonar
Pixel Resolution: 20cm @ 80m range

Kraken AquaPix® SAS
Pixel Resolution: 3cm @ 80m range
Co-Registered Imagery and Bathymetry
Underwater 3D Reconstruction

Acoustical 3D Reconstruction

Optical 3D Reconstruction

DFKI
SeaVision™ - 3D Underwater Imaging
Optic 3D Underwater Reconstruction
Next Gen Survey Cables

- **Quadband SAS**
 - **LF 3D Volumetric Sub-Bottom Imaging**
 - (20 – 32 kHz)
 - 4cm resolution, 5m x 2m depth
 - **LF Side-Looking, Buried Object Detection**
 - (20 – 32 kHz)
 - 20cm Resolution
 - **MF Side-Looking, Long-Range**
 - (60 – 75 kHz),
 - 10cm Resolution, 600m Range
 - **HF Side-Looking, Short-Range**
 - (150 – 200 kHz),
 - 3cm resolution, 300m Range
- **Laser Gap Filer**
 - **Optic downward looking, short-range**
 - 1mm resolution, 8m Range
Strong Portfolio of Maritime Robotics IP

Modeling & Simulation
AI Software
Sensors
Hardware

Robotic Systems
Maritime Robotics as a Service (RaaS)

Robotics as a Service (RaaS)

- Provide customers a recurring data acquisition and seabed intelligence service
- Customer always has access to state of the art vehicle
- No capex intensive asset purchases
- Customers can plan for opex and have their needs more tightly addressed
- RaaS firms benefit from value-based pricing, faster innovation and recurring revenues.

Kraken is positioned to become a leader in Maritime RaaS.
Underwater Digitalization RaaS

- **Mitigate Operational HSSE**
 - Remove people from harms way

- **Reduce OPEX**
 - Robotic automation as replacement for human intensive tasks

- **Mitigate Production Losses**
 - AI prediction of industrial defects

1. Unmanned ASV deploys E-HROV to collect massive amount of data, included laser 3D
2. Specialised databases capture and organize the data in remote clouds
3. AI software detect anomalies and reports in real time
4. Data and reports are shared to optimize repairs and risk based inspection campaigns
4. Service technicians receive alerts, review data and create reports
Infrastructure for Research and Testing
Thank You