Case Study 2: Sweden – Germany (-Denmark)
Thilo Krupp, Stiftung OFFSHORE-WINDENERGIE
Klaipeda, 22. November 2017
1. Case Study Area
2. Scenario Description
3. Marine Uses
4. Final Remarks
Case Studies

Case Study 1: Poland – Sweden with extension to Lithuania

Case Study 2: Germany – Sweden with possible extension to Denmark (area west of Bornholm)
1. Case Study Area

- SE: 245 km²
- DK: 93.5 km²
- DE: 90 km²

Legend:
- CS2
- 2a. Part. Int - High OWP
- HV system
 - CS2 2a. OCP
 - CS2 2a. HVDC converters
 - CS2 2a. 640 kV lines
 - CS2 2a. AC export cable
- OWP system
 - CS2 Turbines High OWP
 - CS2 High OWP areas
- Grid
 - CS2 2a. Substations
 - CS2 2a. 240mm
 - CS2 2a. 630mm
- Export items
 - EEZ
 - Bathymetry (m)
 - 48.000000
 - 43.2000000
 - 37.4000000
 - 31.2000000
 - 25.000000
 - 18.7000000
 - 12.5000000
 - 6.2400000
 - 0.00000
There are six scenarios for each case study:

<table>
<thead>
<tr>
<th>Integration level</th>
<th>OWP level</th>
<th>Scenario</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero Integration</td>
<td>High OWP</td>
<td>Scenario 1a</td>
</tr>
<tr>
<td></td>
<td>Low OWP</td>
<td>Scenario 1b</td>
</tr>
<tr>
<td>Partial Integration</td>
<td>High OWP</td>
<td>Scenario 2a</td>
</tr>
<tr>
<td></td>
<td>Low OWP</td>
<td>Scenario 2b</td>
</tr>
<tr>
<td>Max. Integration</td>
<td>High OWP</td>
<td>Scenario 3a</td>
</tr>
<tr>
<td></td>
<td>Low OWP</td>
<td>Scenario 3b</td>
</tr>
</tbody>
</table>

Vision + Roadmap
2. Scenario Description

(1a) Zero Integration: High OWP (Vision 2045)

(2a) Partial Integration – High OWP (Vision 2045)

(3a) Max Integration – High OWP (Vision 2045)

(1b) Zero Integration: Low OWP (Vision 2045)

(2b) Partial Integration – Low OWP (Vision 2045)

(3b) Max Integration – Low OWP (Vision 2045)
2. Scenario Description

Example: (2a) Partial Integration – High OWP (Vision 2045)

<table>
<thead>
<tr>
<th>Offshore wind capacity</th>
<th>1 132 MW (DE), 1236 MW (SE), 516 MW (DK)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Offshore wind area:</td>
<td>~90 km² (DE), ~245 km² (SE), ~93.5 km² (DK)</td>
</tr>
<tr>
<td>Cable length:</td>
<td>HVDC: 233.74 km AC Export: 311.74 km</td>
</tr>
<tr>
<td>Number of offshore substations:</td>
<td>HVDC Converter (2), AC substations (7)</td>
</tr>
</tbody>
</table>
2. Scenario Description

Example: (2b) Partial Integration – Low OWP (Vision 2045)

<table>
<thead>
<tr>
<th>Description</th>
<th>DE</th>
<th>SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Offshore wind capacity:</td>
<td>928 MW</td>
<td>660 MW</td>
</tr>
<tr>
<td>offshore wind area:</td>
<td>76 km²</td>
<td>121.23 km²</td>
</tr>
<tr>
<td>Cable length:</td>
<td>HVDC 219.2 km</td>
<td>AC Export 163.59</td>
</tr>
<tr>
<td>Number of offshore substations:</td>
<td>HVDC Converter (2),</td>
<td>AC substations (4)</td>
</tr>
</tbody>
</table>
Main difference between 6 scenarios:

- Offshore wind capacities (high / low scenarios)
- Variations in proposed routes and cable length
- Grid connection points
- Number of HVDC converters and AC substations
3. Marine Uses
• The Baltic Sea is a heavily utilized marine area.

• Great diversity of interests
 (Offshore wind energy as a new marine use)

• Interest must be balanced and space must be used efficiently.

→ Efficient use of space is central when planning offshore wind energy systems in highly utilized areas.

→ Joint efforts are necessary to overcome obstacles in spatial planning for energy production and transmission
What are the biggest challenges when planning cross-border linear infrastructure?
(How can we overcome the challenges?)

How can corridors for offshore grids make it into the maritime spatial plans?
Thank you for your attention!

For further information:

Mail: info@baltic-integrid.eu
Web: www.baltic-integrid.eu

Baltic InteGrid represented by the Lead Partner:

Institute for Climate Protection, Energy and Mobility (IKEM)

Magazinstraße 15-16, 10179 Berlin, Germany
Phone: +49 (0) 30 408187015
Mail: info@ikem.de
Web: www.ikem-online.de

Thilo Krupp | Project Manager
Oldenburger Str. 65
26316 Varel, Germany
Phone: +49 (0) 4451 9515 148
Mail: t.krupp@offshore-stiftung.de
Web: www.offshore-stiftung.de

The content of the presentation reflects the author’s/partner’s views and the EU Commission and the MA/JS are not liable for any use that may be made of the information contained therein. All images are copyrighted and property of their respective owners.
MSP in the German EEZ

Responsible Authority: Bundesamt für Seeschifffahrt und Hydrographie (BSH)
MSP in the Swedish EEZ

Responsible Authority: Agency for Marine and Water Management (SwAM)