Kriegers Flak Grid-Connection System: Automatic Voltage and Reactive Power Control

Vladislav Akhmatov

ENERGINET – Transmission System Operator of Denmark

Nordic Clean Energy Week, May 21-25 2018, Copenhagen-Malmö
Baltic Offshore Grid Forum
Kriegers Flak Project

• Grid-connection of 600 MW offshore wind power at Kriegers Flak in the Baltic Sea to the 400kV transmission grid of Denmark.

• Interconnection to Germany via the German offshore infrastructure.

• Utilization of the established grid-connection equipment and new equipment for the interconnection between the two countries – Combined Grid Solution.

• Holds the status of a Project of Common Interests by the European Commission.

• Financial support from the European Energy Programme for Recovery (EEPR).

https://youtu.be/wsuQaf-msaE
Kriegers Flak Grid-connection Project

- Grid-connection of 600 MW offshore wind power to East Denmark.
- Two grid-connection points: Bjæverskov (BJS 400kV) and Ishøj (ISH 400kV), and one new compensation substation Bjæverskov (BJS 220kV) onshore.
- Two 220kV offshore platforms: KFB 400MW and KFA 200 MW offshore wind power.
- A 220kV meshed grid-connection system.
- A 400kV onshore grid reinforcement.
- Must be in operation by Dec. 2018.
Single-line diagram

Meshed 220kV system:
• 220kV submarine and land cables forming a meshed HVAC system.
• Single-busbar 220kV substations KFA and KFB (offshore platforms).
• A double-busbar 220kV substation BJS 220kV.
Single-line diagram and Assets of Control

Meshed 220kV system:
• 220kV submarine and land cables forming a meshed HVAC system.
• Single-busbar 220kV substations KFA and KFB (offshore platforms).
• A double-busbar 220kV substation BJS 220kV.

Assets of the AVR/RPC control:
• 500 MVA 400/220kV transformers TA1 and TA2, and TA3 offshore transformer.
• 120 Mvar 220kV switcheable reactor RKFA.
• 120 Mvar 220kV switcheable reactor RA2.
• 60...120 Mvar 220kV variable reactors RA1, RA3, RA4.
Basic control of n-0 regime

220kV voltage control:
- Target voltage of KFB and KFA platforms.
- Tap-position controllers of TA1 and TA2.
- Master-follow.

Diagram of the control system with voltage levels and connections.
Basic control of n-0 regime

220kV voltage control:
- Target voltage of KFB and KFA platforms.
- Tap-position controllers of TA1 and TA2.
- Master-follow.

400/220kV reactive power control:
- Target reactive-power exchange of Ishøj and Bjæverskov.
- Tap-position and switch controllers of RA1, RA2, RA3, and RA4.
- Going into voltage control in excessive voltage in BJS 220kV.
Basic control of n-0 regime

220kV voltage control:
• Target voltage of KFB and KFA platforms.
• Tap-position controllers of TA1 and TA2.
• Master-follow.

400/220kV reactive power control:
• Target reactive-power exchange of Ishøj and Bjæverskov.
• Tap-position and switch controllers of RA1, RA2, RA3, and RA4.
• Going into voltage control in excessive voltage in BJS 220kV.

150kV voltage control:
• Tap-position controller of TA3.
Several n-1 regimes

Among n-1 regimes of the AVR/RPC control:

- A 220kV cable outage.
- A 400/220kV transformer outage.
- BJS 220kV separation.
- Full separation.
- Separation from 150kV infrastructure.
- KFB island.
- KFA and KFB island.
Interconnected n-1 regimes

Among n-1 regimes of the AVR/RPC control:

• A 220kV cable outage.
• A 400/220kV transformer outage.
• BJS 220kV separation.
• Full separation.
• Separation from 150kV infrastructure.
• KFB island.
• KFA and KFB island.
Interconnected n-1 regimes

Among n-1 regimes of the AVR/RPC control:
- A 220kV cable outage.
- A 400/220kV transformer outage.
- BJS 220kV separation.
- Full separation.
- Separation from 150kV infrastructure.
- KFB island.
- KFA and KFB island.
Interconnected n-1 regimes

Among n-1 regimes of the AVR/RPC control:

- A 220kV cable outage.
- A 400/220kV transformer outage.
- BJS 220kV separation.
- Full separation.
- Separation from 150kV infrastructure.
- KFB island.
- KFA and KFB island.
Interconnected n-1 regimes

Among n-1 regimes of the AVR/RPC control:

- A 220kV cable outage.
- A 400/220kV transformer outage.
- BJS 220kV separation.
- Full separation.
- Separation from 150kV infrastructure.
- KFB island.
- KFA and KFB island.
Interconnected n-1 regimes

Among n-1 regimes of the AVR/RPC control:

- A 220kV cable outage.
- A 400/220kV transformer outage.
- BJS 220kV separation.
- Full separation.
- Separation from 150kV infrastructure.
- KFB island.
- KFA and KFB island.
Interconnected n-1 regimes

Among n-1 regimes of the AVR/RPC control:

• A 220kV cable outage.
• A 400/220kV transformer outage.
• BJS 220kV separation.
• Full separation.
• Separation from 150kV infrastructure.
• KFB island.
• KFA and KFB island.
Interconnected n-1 regimes

Among n-1 regimes of the AVR/RPC control:
- A 220kV cable outage.
- A 400/220kV transformer outage.
- BJS 220kV separation.
- Full separation.
- Separation from 150kV infrastructure.
- KFB island.
- KFA and KFB island.
Interconnected n-1 regimes

Among n-1 regimes of the AVR/RPC control:

- A 220kV cable outage.
- A 400/220kV transformer outage.
- BJS 220kV separation.
- **Full separation.**
- Separation from 150kV infrastructure.
- KFB island.
- KFA and KFB island.
Full separation: Cross-coupling detection

- Connection between onshore transformers and offshore platforms through the double-busbar system.

- Connection between reactors and the 400kV grid-connection points through the double-busbar system.

- Preparedness for separate operation.
Separate n-1 regimes

Among n-1 regimes of the AVR/RPC control:

- A 220kV cable outage.
- A 400/220kV transformer outage.
- BJS 220kV separation.
- Full separation.
- **Separation from 150kV infrastructure.**
- KFB island.
- KFA and KFB island.
Separate n-1 regimes

Among n-1 regimes of the AVR/RPC control:

• A 220kV cable outage.
• A 400/220kV transformer outage.
• BJS 220kV separation.
• Full separation.

• Separation from 150kV infrastructure.
• KFB island.
• KFA and KFB island.
Separate n-1 regimes

Among n-1 regimes of the AVR/RPC control:
- A 220kV cable outage.
- A 400/220kV transformer outage.
- BJS 220kV separation.
- Full separation.
- Separation from 150kV infrastructure.
- **KFB island.**
- **KFA and KFB island.**
Separate n-1 regimes

Among n-1 regimes of the AVR/RPC control:

- A 220kV cable outage.
- A 400/220kV transformer outage.
- BJS 220kV separation.
- Full separation.
- Separation from 150kV infrastructure.
- KFB island.
- KFA and KFB island.
Power flow patterns

For a conventional wind power plant, the power flow is always from the platforms to the onshore grid.
Power flow patterns

For a conventional wind power plant, the power flow is always from the platforms to the onshore grid.

But the Kriegers Flak grid is special. The power transport can go with or without wind ...
Power flow patterns

For a conventional wind power plant, the power flow is always from the platforms to the onshore grid.

But the Kriegers Flak grid is special. The power transport can go with or without wind and both directions.
Power flow patterns

For a conventional wind power plant, the power flow is always from the platforms to the onshore grid.

But the Kriegers Flak grid is special. The power transport can go with or without wind and both directions.

For the AVR/RPC control this means that it works with different voltage profiles and varying reactive power conditions.
Secure and robust control

The point is not how many n-M and power flow patterns we may define.

The point is how to conduct the AVR/RPC control in each of those operation regimes in secure and robust manners.
Simulation normal n-0 operation

Preconditions: 24 hours, 1 minute resolution, wind power fluctuation
Closer look at n-0

Number of steps over 24 h: TA1/TA2: 1/1. RL: 0/0/0/0. VSR: 48/35/6.
Simulation transitions \((n-0) \rightarrow (n-1) \rightarrow (n-0)\)

Preconditions
- 15 hours, 1 minute resolution
- Wind power fluctuation

Active Power MW

<table>
<thead>
<tr>
<th>Time h</th>
<th>BJS-400-220-autotrf Total Active Power/HV-Side in MW</th>
<th>ISH-400-220-autotrf Total Active Power/HV-Side in MW</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Transformer Tap Position

<table>
<thead>
<tr>
<th>Time h</th>
<th>BJS-400-220-autotrf Tap 1, Current Position</th>
<th>ISH-400-220-autotrf Tap 1, Current Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Reactive Power Mvar

<table>
<thead>
<tr>
<th>Time h</th>
<th>BJS-400-220-autotrf Total Reactive Power/HV-Side in Mvar</th>
<th>ISH-400-220-autotrf Total Reactive Power/HV-Side in Mvar</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Logic_RL_Dsl Total steps of QL RL7

- Separate BJS
- Reclose BJS

Logic_RL_Dsl Total steps of QM RL4

- Separate KFA-KFB
- Reclose KFA-KFB

Logic_RL_Dsl Total steps of QM RL6

- Separate BJS
- Reclose BJS

Logic_RL_Dsl Total steps of QM RL8

- Separate KFA-KFB
- Reclose KFA-KFB

Nordic Clean Energy Week, May 21-25 2018, Copenhagen-Malmö

May 23 2018
Number of steps over 15 h: TA1/TA2: 6/4. RL: 0/0/0/3. VSR: 44/36/5.
Conclusion

- **Automatic** voltage and reactive power control (AVR/RPC) due to the system complexity.
- The AVR/RPC complies with reactive-power and voltage ranges.
- Secure and robust control in several operation regimes and flow patterns.
- Most AVR/RPC control-activations are expected in n-1 regimes and (reactive) power flow fluctuations over the interconnector.
- More experience to be gained during the trial operation.
Thank you!

Learn more at:

https://en.energinet.dk/Infrastructure-Projects/Projektliste/KriegersFlakCGS

https://en.energinet.dk/Infrastructure-Projects/Projektliste/KriegersFlakAC